

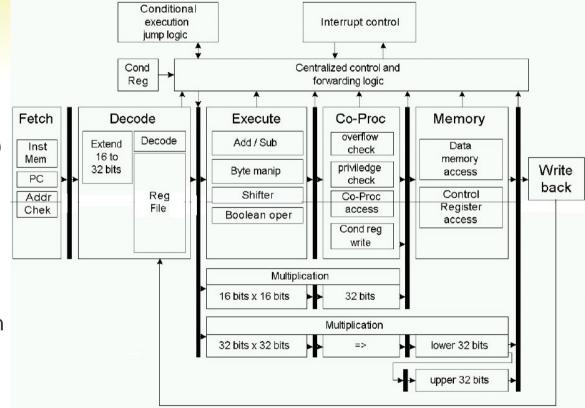
TAMPERE UNIVERSITY OF TECHNOLOGY

Silicon Café: A Heterogeneous Multi-Processor Platform Based on Coffee (RISC Core)

Prof. Jari Nurmi Tampere University of Technology Department of Computer Systems P.O.Box 553, FIN-33101 Tampere FINLAND Email: jari.nurmi@tut.fi

Motivation

- An efficient platform is needed for a software-defined terminal (SDT)
- SDT requires from the platform efficient joint processing of
 - Receiver baseband algorithms
 - Higher communication layer protocols
 - Multimedia applications
 - = streaming applications distributed on the processing platform
- Also, need to optimize
 - Performance
 - Power consumption

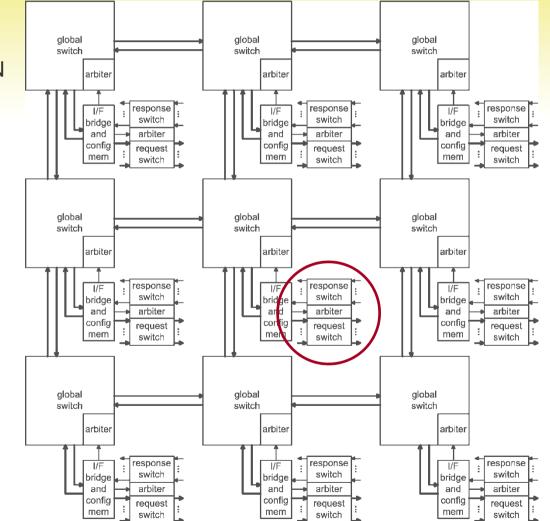

\rightarrow

- Heterogeneous solution for the hardware platform
 - Different types of processing cores
 - Reconfigurable acceleration hardware
 - Optimized standard blocks
 - Memory
 - High-bandwidth interconnect to support streaming applications

Coffee RISC Core [™]

- Open-source RISC core for embedded systems available at coffee.tut.fi
- Comes in different flavours
 - "Regular" Coffee (32-bit integer)
 - Coffee + MILK (FP co-processor)
 - Cappuccino (integer/FP integrated version)
 - Espresso (Coffee accelerated with digital receiver coprocessors)
 - Decaf (stripped-down controller)
- Also working on a 2nd generation superscalar Coffee
 - Scalable multi-issue architecture
 - Branch prediction

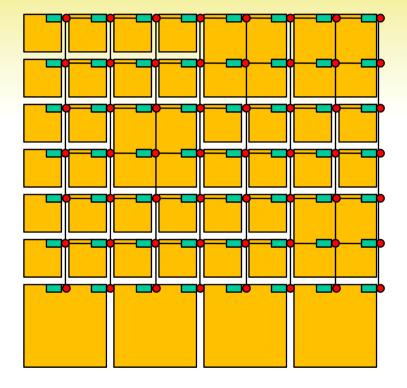
BUTTER Coarse-Grain Reconfigurable Accelerator



TUT Hierarchical 2nd Generation Network-on-Chip

- Local buses replaced by memorymapped switch cluster
- N masters and M slaves requires N x (M+1) switches
- Bus bottleneck avoided
- Guaranteed service can be provided
- Programmable priority scheme (relative priorities)
- Programmable configuration lifetime and fast context switching (page pointer set externally)
- Pipelined accesses
- Switching delay in 1 ns range in 90 nm technologies, using a few kgates/switch (for 32-bit data)
- Local switches connect to a chipwide global NoC (Mesh, ring, ...)

TAMPERE UNIVERSITY OF TECHNOLOGY Department of Computer Systems



Silicon Café: Heterogeneous Multi-Processor Platform

- Abuttable tiles of various types
 - Coffee
 - Simplified Coffee (Decaf)
 - INT/FP Coffee (Cappuccino)
 - SuperCoffee (name???) of various types
 - Hardwired blocks
 - Reconfigurable blocks
 - Fine grain (eFPGA type)
 - Coarse-grain acceleration (e.g.BUTTER)
 - Common memory buffers
 - Two-level granularity of tiles
- Distributed data memory may be used
 - Remote data managed by DMA, or stall/thread change if "miss" from local memory
 - · Or use L1 caches in some of the tiles and common L2 (or shared main memory)
- Tiles connected by TUT NoC
 - Large tiles may have several NoC I/F
 - Hierarchical NoC (local/global) •

Department of Computer Systems

- = Tile
- = NoC Interface
- = NoC router (top-level)
- = NoC Interconnect

25.06.2008

Towards Multiprocessor Software-Defined Terminals

- The first Silicon Café platform instance has been designed in VHDL (A nine-core Silicon Café = NineSiliCa ??? ⁽ⁱ⁾)
- Starting to map communications and positioning receivers on Silicon Café
- The multiprocessor platforms seen as a unifying architecture for multimedia, outer and inner transceiver, and positioning algorithm execution in future Software Defined Terminals (SDT)
- The processors can also assume the task of determining the services in a cognitive radio type of environment
- However, SDR/CR/SDT is not a solution for all digital receivers: optimized point solutions will remain feasible for cases where the flexibility and versatility of a programmable platform are not needed

Future Plans Regarding Silicon Café

- Need to coordinate and fund a lot of work
 - Further development of platform components (Coffee, BUTTER, etc.)
 - Futher development of compilers and other tooling
 - Implementation (on FPGA board in the first phase)
 - Mapping and benchmarking of applications
- Looking for partnerships, e.g., in
 - Tool development
 - Silicon implementation
 - Applications
- Looking for joint projects to carry on the work
 - EU IST programme projects
 - ARTEMIS
 - Direct bilateral activities
 - Visiting researcher grants
 - you name it...

SoC 2008, Tampere, Finland, Nov. 5-6

Theme of the year: Software-Defined and Cognitive Radio Tutorial on t.b.d. on Monday November 4 Invited talks

• t.b.d.

Contributed scientific papers

deadline June 8, 2008

Industry track papers

• deadline August 15, 2008 Exhibit

Sponsorship opportunities

Steering committee:

Mika Kuulusa, Nokia, Finland Heinrich Meyr, RWTH Aachen, Germany Jari Nurmi, TUT, Finland (Chairman) Jan Rabaey, UC Berkeley, USA Hannu Tenhunen, KTH, Sweden

